aboutsummaryrefslogtreecommitdiff
blob: 8aff9b895af164a2f12fac02893d14dd768ccbf2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
.file "log1pf.s" 

// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
// 
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
// 
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at 
// http://developer.intel.com/opensource.
//
// History
//==============================================================
// 2/02/00  Initial version
// 4/04/00  Unwind support added
// 8/15/00  Bundle added after call to __libm_error_support to properly
//          set [the previously overwritten] GR_Parameter_RESULT.
//
// *********************************************************************
//
// Function:   log1pf(x) = ln(x+1), for single precision values
//
// *********************************************************************
//
// Accuracy:   Very accurate for single precision values
//
// *********************************************************************
//
// Resources Used:
//
//    Floating-Point Registers: f8 (Input and Return Value)
//                              f9,f33-f55,f99 
//
//    General Purpose Registers:
//      r32-r53
//      r54-r57 (Used to pass arguments to error handling routine)
//
//    Predicate Registers:      p6-p15
//
// *********************************************************************
//
// IEEE Special Conditions:
//
//    Denormal  fault raised on denormal inputs
//    Overflow exceptions cannot occur  
//    Underflow exceptions raised when appropriate for log1pf 
//    (Error Handling Routine called for underflow)
//    Inexact raised when appropriate by algorithm
//
//    log1pf(inf) = inf
//    log1pf(-inf) = QNaN 
//    log1pf(+/-0) = +/-0 
//    log1pf(-1) =  -inf 
//    log1pf(SNaN) = QNaN
//    log1pf(QNaN) = QNaN
//    log1pf(EM_special Values) = QNaN
//
// *********************************************************************
//
// Computation is based on the following kernel.
//
// ker_log_64( in_FR    :  X,
// 	    in_FR    :  E,
// 	    in_FR    :  Em1,
// 	    in_GR    :  Expo_Range,
// 	    out_FR   :  Y_hi,
// 	    out_FR   :  Y_lo,
// 	    out_FR   :  Scale,
// 	    out_PR   :  Safe  )
// 
// Overview
//
// The method consists of three cases.
//
// If	|X+Em1| < 2^(-80)	use case log1pf_small;
// elseif	|X+Em1| < 2^(-7)	use case log_near1;
// else				use case log_regular;
//
// Case log1pf_small:
//
// log( 1 + (X+Em1) ) can be approximated by (X+Em1).
//
// Case log_near1:
//
//   log( 1 + (X+Em1) ) can be approximated by a simple polynomial
//   in W = X+Em1. This polynomial resembles the truncated Taylor
//   series W - W^/2 + W^3/3 - ...
// 
// Case log_regular:
//
//   Here we use a table lookup method. The basic idea is that in
//   order to compute log(Arg) for an argument Arg in [1,2), we 
//   construct a value G such that G*Arg is close to 1 and that
//   log(1/G) is obtainable easily from a table of values calculated
//   beforehand. Thus
//
//	log(Arg) = log(1/G) + log(G*Arg)
//		 = log(1/G) + log(1 + (G*Arg - 1))
//
//   Because |G*Arg - 1| is small, the second term on the right hand
//   side can be approximated by a short polynomial. We elaborate
//   this method in four steps.
//
//   Step 0: Initialization
//
//   We need to calculate log( E + X ). Obtain N, S_hi, S_lo such that
//
//	E + X = 2^N * ( S_hi + S_lo )	exactly
//
//   where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
//   that |S_lo| <= ulp(S_hi).
//
//   Step 1: Argument Reduction
//
//   Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
//
//	G := G_1 * G_2 * G_3
//	r := (G * S_hi - 1)  + G * S_lo
//
//   These G_j's have the property that the product is exactly 
//   representable and that |r| < 2^(-12) as a result.
//
//   Step 2: Approximation
//
//
//   log(1 + r) is approximated by a short polynomial poly(r).
//
//   Step 3: Reconstruction
//
//
//   Finally, log( E + X ) is given by
//
//   log( E + X )   =   log( 2^N * (S_hi + S_lo) )
//                 ~=~  N*log(2) + log(1/G) + log(1 + r)
//                 ~=~  N*log(2) + log(1/G) + poly(r).
//
// **** Algorithm ****
//
// Case log1pf_small:
//
// Although log(1 + (X+Em1)) is basically X+Em1, we would like to 
// preserve the inexactness nature as well as consistent behavior
// under different rounding modes. Note that this case can only be
// taken if E is set to be 1.0. In this case, Em1 is zero, and that
// X can be very tiny and thus the final result can possibly underflow.
// Thus, we compare X against a threshold that is dependent on the
// input Expo_Range. If |X| is smaller than this threshold, we set
// SAFE to be FALSE. 
//
// The result is returned as Y_hi, Y_lo, and in the case of SAFE 
// is FALSE, an additional value Scale is also returned. 
//
//	W    := X + Em1
//      Threshold := Threshold_Table( Expo_Range )
//      Tiny      := Tiny_Table( Expo_Range )
//
//      If ( |W| > Threshold ) then
//         Y_hi  := W
//         Y_lo  := -W*W
//      Else
//         Y_hi  := W
//         Y_lo  := -Tiny
//         Scale := 2^(-100)
//         Safe  := FALSE
//      EndIf
//
//
// One may think that Y_lo should be -W*W/2; however, it does not matter
// as Y_lo will be rounded off completely except for the correct effect in 
// directed rounding. Clearly -W*W is simplier to compute. Moreover,
// because of the difference in exponent value, Y_hi + Y_lo or 
// Y_hi + Scale*Y_lo is always inexact.
//
// Case log_near1:
//
// Here we compute a simple polynomial. To exploit parallelism, we split
// the polynomial into two portions.
// 
// 	W := X + Em1
// 	Wsq := W * W
// 	W4  := Wsq*Wsq
// 	W6  := W4*Wsq
// 	Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
// 	Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
//      set lsb(Y_lo) to be 1
//
// Case log_regular:
//
// We present the algorithm in four steps.
//
//   Step 0. Initialization
//   ----------------------
//
//   Z := X + E
//   N := unbaised exponent of Z
//   S_hi := 2^(-N) * Z
//   S_lo := 2^(-N) * { (max(X,E)-Z) + min(X,E) }
//
//   Note that S_lo is always 0 for the case E = 0.
//
//   Step 1. Argument Reduction
//   --------------------------
//
//   Let
//
//	Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
//
//   We obtain G_1, G_2, G_3 by the following steps.
//
//
//	Define		X_0 := 1.d_1 d_2 ... d_14. This is extracted
//			from S_hi.
//
//	Define		A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
//			to lsb = 2^(-4).
//
//	Define		index_1 := [ d_1 d_2 d_3 d_4 ].
//
//	Fetch 		Z_1 := (1/A_1) rounded UP in fixed point with
//	fixed point	lsb = 2^(-15).
//			Z_1 looks like z_0.z_1 z_2 ... z_15
//		        Note that the fetching is done using index_1.
//			A_1 is actually not needed in the implementation
//			and is used here only to explain how is the value
//			Z_1 defined.
//
//	Fetch		G_1 := (1/A_1) truncated to 21 sig. bits.
//	floating pt.	Again, fetching is done using index_1. A_1
//			explains how G_1 is defined.
//
//	Calculate	X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
//			     = 1.0 0 0 0 d_5 ... d_14
//			This is accomplised by integer multiplication.
//			It is proved that X_1 indeed always begin
//			with 1.0000 in fixed point.
//
//
//	Define		A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1 
//			truncated to lsb = 2^(-8). Similar to A_1,
//			A_2 is not needed in actual implementation. It
//			helps explain how some of the values are defined.
//
//	Define		index_2 := [ d_5 d_6 d_7 d_8 ].
//
//	Fetch 		Z_2 := (1/A_2) rounded UP in fixed point with
//	fixed point	lsb = 2^(-15). Fetch done using index_2.
//			Z_2 looks like z_0.z_1 z_2 ... z_15
//
//	Fetch		G_2 := (1/A_2) truncated to 21 sig. bits.
//	floating pt.
//
//	Calculate	X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
//			     = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
//			This is accomplised by integer multiplication.
//			It is proved that X_2 indeed always begin
//			with 1.00000000 in fixed point.
//
//
//	Define		A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
//			This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
//
//	Define		index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
//
//	Fetch		G_3 := (1/A_3) truncated to 21 sig. bits.
//	floating pt.	Fetch is done using index_3.
//
//	Compute		G := G_1 * G_2 * G_3. 
//
//	This is done exactly since each of G_j only has 21 sig. bits.
//
//	Compute   
//
//		r := (G*S_hi - 1) + G*S_lo   using 2 FMA operations.
//
//	thus, r approximates G*(S_hi+S_lo) - 1 to within a couple of 
//	rounding errors.
//
//
//  Step 2. Approximation
//  ---------------------
//
//   This step computes an approximation to log( 1 + r ) where r is the
//   reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
//   thus log(1+r) can be approximated by a short polynomial:
//
//	log(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
//
//
//  Step 3. Reconstruction
//  ----------------------
//
//   This step computes the desired result of log(X+E):
//
//	log(X+E)  =   log( 2^N * (S_hi + S_lo) )
//		  =   N*log(2) + log( S_hi + S_lo )
//		  =   N*log(2) + log(1/G) +
//		      log(1 + C*(S_hi+S_lo) - 1 )
//
//   log(2), log(1/G_j) are stored as pairs of (single,double) numbers:
//   log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
//   single-precision numbers and the low parts are double precision
//   numbers. These have the property that
//
//	N*log2_hi + SUM ( log1byGj_hi )
//
//   is computable exactly in double-extended precision (64 sig. bits).
//   Finally
//
//	Y_hi := N*log2_hi + SUM ( log1byGj_hi )
//	Y_lo := poly_hi + [ poly_lo + 
//	        ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
//      set lsb(Y_lo) to be 1
//

#include "libm_support.h"

#ifdef _LIBC
.rodata
#else
.data
#endif

// P_7, P_6, P_5, P_4, P_3, P_2, and P_1 

.align 64
Constants_P:
ASM_TYPE_DIRECTIVE(Constants_P,@object)
data4  0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
data4  0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
data4  0x73282DB0,0x9249248C,0x00003FFC,0x00000000
data4  0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
data4  0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
data4  0x00067ED5,0x80000000,0x0000BFFD,0x00000000
data4  0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
data4  0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
ASM_SIZE_DIRECTIVE(Constants_P)
 
// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1 

.align 64
Constants_Q:
ASM_TYPE_DIRECTIVE(Constants_Q,@object)
data4  0x00000000,0xB1721800,0x00003FFE,0x00000000 
data4  0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
data4  0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
data4  0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
data4  0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
data4  0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
ASM_SIZE_DIRECTIVE(Constants_Q)
 
// Z1 - 16 bit fixed, G1 and H1 - IEEE single 
 
.align 64
Constants_Z_G_H_h1:
ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h1,@object)
data4  0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
data4  0x00007879,0x3F70F0F0,0x3D785196,0x00000000,0x617D741C,0x3DA163A6
data4  0x000071C8,0x3F638E38,0x3DF13843,0x00000000,0xCBD3D5BB,0x3E2C55E6
data4  0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000,0xD86EA5E7,0xBE3EB0BF
data4  0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000,0x86B12760,0x3E2E6A8C
data4  0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000,0x5C0739BA,0x3E47574C
data4  0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000,0x13E8AF2F,0x3E20E30F
data4  0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000,0xF2C630BD,0xBE42885B
data4  0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000,0x97E577C6,0x3E497F34
data4  0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000,0xA6B0A5AB,0x3E3E6A6E
data4  0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000,0xD328D9BE,0xBDF43E3C
data4  0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000,0x0ADB090A,0x3E4094C3
data4  0x00004925,0x3F124920,0x3F0F4303,0x00000000,0xFC1FE510,0xBE28FBB2
data4  0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000,0x10FDE3FA,0x3E3A7895
data4  0x00004445,0x3F088888,0x3F20EC80,0x00000000,0x7CC8C98F,0x3E508CE5
data4  0x00004211,0x3F042108,0x3F29516A,0x00000000,0xA223106C,0xBE534874
ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h1)
 
// Z2 - 16 bit fixed, G2 and H2 - IEEE single 

.align 64 
Constants_Z_G_H_h2:
ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h2,@object)
data4  0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
data4  0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000,0x22C42273,0x3DB5A116
data4  0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000,0x21F86ED3,0x3DE620CF
data4  0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000,0x484F34ED,0xBDAFA07E
data4  0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000,0x3860BCF6,0xBDFE07F0
data4  0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000,0xA78093D6,0x3DEA370F
data4  0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000,0x72A753D0,0x3DFF5791
data4  0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000,0xA7EF896B,0x3DFEBE6C
data4  0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000,0x409ECB43,0x3E0CF156
data4  0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000,0xFFEF71DF,0xBE0B6F97
data4  0x00007B31,0x3F766038,0x3D1CF49B,0x00000000,0x5D59EEE8,0xBE080483
data4  0x00007ABB,0x3F757400,0x3D2C531D,0x00000000,0xA9192A74,0x3E1F91E9
data4  0x00007A45,0x3F748988,0x3D3BA322,0x00000000,0xBF72A8CD,0xBE139A06
data4  0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000,0xF8FBA6CF,0x3E1D9202
data4  0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000,0xBA796223,0xBE1DCCC4
data4  0x000078EB,0x3F71D488,0x3D693B9D,0x00000000,0xB6B7C239,0xBE049391
ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h2)
 
// G3 and H3 - IEEE single and h3 -IEEE double 

.align 64 
Constants_Z_G_H_h3:
ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h3,@object)
data4  0x3F7FFC00,0x38800100,0x562224CD,0x3D355595
data4  0x3F7FF400,0x39400480,0x06136FF6,0x3D8200A2
data4  0x3F7FEC00,0x39A00640,0xE8DE9AF0,0x3DA4D68D
data4  0x3F7FE400,0x39E00C41,0xB10238DC,0xBD8B4291
data4  0x3F7FDC00,0x3A100A21,0x3B1952CA,0xBD89CCB8
data4  0x3F7FD400,0x3A300F22,0x1DC46826,0xBDB10707
data4  0x3F7FCC08,0x3A4FF51C,0xF43307DB,0x3DB6FCB9
data4  0x3F7FC408,0x3A6FFC1D,0x62DC7872,0xBD9B7C47
data4  0x3F7FBC10,0x3A87F20B,0x3F89154A,0xBDC3725E
data4  0x3F7FB410,0x3A97F68B,0x62B9D392,0xBD93519D
data4  0x3F7FAC18,0x3AA7EB86,0x0F21BD9D,0x3DC18441
data4  0x3F7FA420,0x3AB7E101,0x2245E0A6,0xBDA64B95
data4  0x3F7F9C20,0x3AC7E701,0xAABB34B8,0x3DB4B0EC
data4  0x3F7F9428,0x3AD7DD7B,0x6DC40A7E,0x3D992337
data4  0x3F7F8C30,0x3AE7D474,0x4F2083D3,0x3DC6E17B
data4  0x3F7F8438,0x3AF7CBED,0x811D4394,0x3DAE314B
data4  0x3F7F7C40,0x3B03E1F3,0xB08F2DB1,0xBDD46F21
data4  0x3F7F7448,0x3B0BDE2F,0x6D34522B,0xBDDC30A4
data4  0x3F7F6C50,0x3B13DAAA,0xB1F473DB,0x3DCB0070
data4  0x3F7F6458,0x3B1BD766,0x6AD282FD,0xBDD65DDC
data4  0x3F7F5C68,0x3B23CC5C,0xF153761A,0xBDCDAB83
data4  0x3F7F5470,0x3B2BC997,0x341D0F8F,0xBDDADA40
data4  0x3F7F4C78,0x3B33C711,0xEBC394E8,0x3DCD1BD7
data4  0x3F7F4488,0x3B3BBCC6,0x52E3E695,0xBDC3532B
data4  0x3F7F3C90,0x3B43BAC0,0xE846B3DE,0xBDA3961E
data4  0x3F7F34A0,0x3B4BB0F4,0x785778D4,0xBDDADF06
data4  0x3F7F2CA8,0x3B53AF6D,0xE55CE212,0x3DCC3ED1
data4  0x3F7F24B8,0x3B5BA620,0x9E382C15,0xBDBA3103
data4  0x3F7F1CC8,0x3B639D12,0x5C5AF197,0x3D635A0B
data4  0x3F7F14D8,0x3B6B9444,0x71D34EFC,0xBDDCCB19
data4  0x3F7F0CE0,0x3B7393BC,0x52CD7ADA,0x3DC74502
data4  0x3F7F04F0,0x3B7B8B6D,0x7D7F2A42,0xBDB68F17
ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h3)
 
// 
//  Exponent Thresholds and Tiny Thresholds
//  for 8, 11, 15, and 17 bit exponents
// 
//  Expo_Range             Value
// 
//  0 (8  bits)            2^(-126)
//  1 (11 bits)            2^(-1022)
//  2 (15 bits)            2^(-16382)
//  3 (17 bits)            2^(-16382)
// 
//  Tiny_Table
//  ----------
//  Expo_Range             Value
// 
//  0 (8  bits)            2^(-16382)
//  1 (11 bits)            2^(-16382)
//  2 (15 bits)            2^(-16382)
//  3 (17 bits)            2^(-16382)
// 

.align 64 
Constants_Threshold:
ASM_TYPE_DIRECTIVE(Constants_Threshold,@object)
data4  0x00000000,0x80000000,0x00003F81,0x00000000
data4  0x00000000,0x80000000,0x00000001,0x00000000
data4  0x00000000,0x80000000,0x00003C01,0x00000000
data4  0x00000000,0x80000000,0x00000001,0x00000000
data4  0x00000000,0x80000000,0x00000001,0x00000000
data4  0x00000000,0x80000000,0x00000001,0x00000000
data4  0x00000000,0x80000000,0x00000001,0x00000000
data4  0x00000000,0x80000000,0x00000001,0x00000000
ASM_SIZE_DIRECTIVE(Constants_Threshold)

.align 64
Constants_1_by_LN10:
ASM_TYPE_DIRECTIVE(Constants_1_by_LN10,@object)
data4  0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
data4  0xACCF70C8,0xD56EAABE,0x00003FBD,0x00000000
ASM_SIZE_DIRECTIVE(Constants_1_by_LN10)

FR_Input_X = f8 
FR_Neg_One = f9
FR_E       = f33
FR_Em1     = f34
FR_Y_hi    = f34  
// Shared with Em1
FR_Y_lo    = f35
FR_Scale   = f36
FR_X_Prime = f37 
FR_Z       = f38 
FR_S_hi    = f38  
// Shared with Z  
FR_W       = f39
FR_G       = f40
FR_wsq     = f40 
// Shared with G 
FR_H       = f41
FR_w4      = f41
// Shared with H  
FR_h       = f42
FR_w6      = f42  
// Shared with h     
FR_G_tmp   = f43
FR_poly_lo = f43
// Shared with G_tmp 
FR_P8      = f43  
// Shared with G_tmp 
FR_H_tmp   = f44
FR_poly_hi = f44
  // Shared with H_tmp
FR_P7      = f44  
// Shared with H_tmp
FR_h_tmp   = f45 
FR_rsq     = f45  
// Shared with h_tmp
FR_P6      = f45
// Shared with h_tmp
FR_abs_W   = f46
FR_r       = f46  
// Shared with abs_W  
FR_AA      = f47 
FR_log2_hi = f47  
// Shared with AA  
FR_BB          = f48
FR_log2_lo     = f48  
// Shared with BB  
FR_S_lo        = f49 
FR_two_negN    = f50  
FR_float_N     = f51 
FR_Q4          = f52 
FR_dummy       = f52  
// Shared with Q4
FR_P4          = f52  
// Shared with Q4
FR_Threshold    = f52
// Shared with Q4
FR_Q3          = f53  
FR_P3          = f53  
// Shared with Q3
FR_Tiny        = f53  
// Shared with Q3
FR_Q2          = f54 
FR_P2          = f54  
// Shared with Q2
FR_1LN10_hi     = f54 
// Shared with Q2
FR_Q1           = f55 
FR_P1           = f55 
// Shared with Q1 
FR_1LN10_lo     = f55 
// Shared with Q1 
FR_P5           = f98 
FR_SCALE        = f98 
FR_Output_X_tmp = f99 

GR_Expo_Range   = r32
GR_Table_Base   = r34
GR_Table_Base1  = r35
GR_Table_ptr    = r36 
GR_Index2       = r37 
GR_signif       = r38 
GR_X_0          = r39 
GR_X_1          = r40 
GR_X_2          = r41 
GR_Z_1          = r42 
GR_Z_2          = r43 
GR_N            = r44 
GR_Bias         = r45 
GR_M            = r46 
GR_ScaleN       = r47  
GR_Index3       = r48 
GR_Perturb      = r49 
GR_Table_Scale  = r50 


GR_SAVE_PFS     = r51
GR_SAVE_B0      = r52
GR_SAVE_GP      = r53

GR_Parameter_X       = r54
GR_Parameter_Y       = r55
GR_Parameter_RESULT  = r56

GR_Parameter_TAG = r57 


.section .text
.proc log1pf#
.global log1pf#
.align 64 
log1pf:
#ifdef _LIBC
.global __log1pf
__log1pf:
#endif

{ .mfi
alloc r32 = ar.pfs,0,22,4,0
(p0)  fsub.s1 FR_Neg_One = f0,f1 
(p0)  cmp.eq.unc  p7, p0 = r0, r0 
}

{ .mfi
(p0)  cmp.ne.unc  p14, p0 = r0, r0 
(p0)  fnorm.s1 FR_X_Prime = FR_Input_X 
(p0)  cmp.eq.unc  p15, p0 = r0, r0 ;; 
}

{ .mfi
      nop.m 999
(p0)  fclass.m.unc p6, p0 =  FR_Input_X, 0x1E3 
      nop.i 999
}
;;

{ .mfi
	nop.m 999
(p0)  fclass.nm.unc p10, p0 =  FR_Input_X, 0x1FF 
      nop.i 999
}
;;

{ .mfi
	nop.m 999
(p0)  fcmp.eq.unc.s1 p9, p0 =  FR_Input_X, f0 
      nop.i 999
}

{ .mfi
	nop.m 999
(p0)  fadd FR_Em1 = f0,f0 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fadd FR_E = f0,f1 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fcmp.eq.unc.s1 p8, p0 =  FR_Input_X, FR_Neg_One 
	nop.i 999
}

{ .mfi
	nop.m 999
(p0)  fcmp.lt.unc.s1 p13, p0 =  FR_Input_X, FR_Neg_One 
	nop.i 999
}


L(LOG_BEGIN): 

{ .mfi
	nop.m 999
(p0)  fadd.s1 FR_Z = FR_X_Prime, FR_E 
	nop.i 999
}

{ .mlx
	nop.m 999
(p0)  movl GR_Table_Scale = 0x0000000000000018 ;; 
}

{ .mmi
	nop.m 999
//     
//    Create E = 1 and Em1 = 0 
//    Check for X == 0, meaning log(1+0)
//    Check for X < -1, meaning log(negative)
//    Check for X == -1, meaning log(0)
//    Normalize x 
//    Identify NatVals, NaNs, Infs. 
//    Identify EM unsupporteds. 
//    Identify Negative values - us S1 so as
//    not to raise denormal operand exception 
//    Set p15 to true for log1pf
//    Set p14 to false for log1pf
//    Set p7 true for log and log1pf
//    
(p0)  addl GR_Table_Base = @ltoff(Constants_Z_G_H_h1#),gp
      nop.i  999
}

{ .mfi
	nop.m 999
(p0)  fmax.s1 FR_AA = FR_X_Prime, FR_E 
	nop.i 999 ;;
}

{ .mfi
      ld8    GR_Table_Base = [GR_Table_Base]
(p0)  fmin.s1 FR_BB = FR_X_Prime, FR_E 
	nop.i 999
}

{ .mfb
	nop.m 999
(p0)  fadd.s1 FR_W = FR_X_Prime, FR_Em1 
//     
//    Begin load of constants base
//    FR_Z = Z = |x| + E 
//    FR_W = W = |x| + Em1
//    AA = fmax(|x|,E)
//    BB = fmin(|x|,E)
//
(p6)  br.cond.spnt L(LOG_64_special) ;; 
}

{ .mib
	nop.m 999
	nop.i 999
(p10) br.cond.spnt L(LOG_64_unsupported) ;; 
}

{ .mib
	nop.m 999
	nop.i 999
(p13) br.cond.spnt L(LOG_64_negative) ;; 
}

{ .mib
(p0)  getf.sig GR_signif = FR_Z 
	nop.i 999
(p9)  br.cond.spnt L(LOG_64_one) ;; 
}

{ .mib
	nop.m 999
	nop.i 999
(p8)  br.cond.spnt L(LOG_64_zero) ;; 
}

{ .mfi
(p0)  getf.exp GR_N =  FR_Z 
//   
//    Raise possible denormal operand exception 
//    Create Bias
// 
//    This function computes ln( x + e ) 
//    Input  FR 1: FR_X   = FR_Input_X          
//    Input  FR 2: FR_E   = FR_E
//    Input  FR 3: FR_Em1 = FR_Em1 
//    Input  GR 1: GR_Expo_Range = GR_Expo_Range = 1
//    Output FR 4: FR_Y_hi  
//    Output FR 5: FR_Y_lo  
//    Output FR 6: FR_Scale  
//    Output PR 7: PR_Safe  
//
(p0)  fsub.s1 FR_S_lo = FR_AA, FR_Z 
//
//    signif = getf.sig(Z)
//    abs_W = fabs(w)
//
(p0)  extr.u GR_Table_ptr = GR_signif, 59, 4 ;; 
}

{ .mfi
	nop.m 999
(p0)  fmerge.se FR_S_hi =  f1,FR_Z 
(p0)  extr.u GR_X_0 = GR_signif, 49, 15  
}

{ .mmi
      nop.m 999
(p0)  addl GR_Table_Base1 = @ltoff(Constants_Z_G_H_h2#),gp  
      nop.i 999
}
;;

{ .mlx
      ld8    GR_Table_Base1 = [GR_Table_Base1]
(p0)  movl GR_Bias = 0x000000000000FFFF ;; 
}

{ .mfi
	nop.m 999
(p0)  fabs FR_abs_W =  FR_W 
(p0)  pmpyshr2.u GR_Table_ptr = GR_Table_ptr,GR_Table_Scale,0 
}

{ .mfi
	nop.m 999
//    
//    Branch out for special input values 
//    
(p0)  fcmp.lt.unc.s0 p8, p0 =  FR_Input_X, f0 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
//
//    X_0 = extr.u(signif,49,15)
//    Index1 = extr.u(signif,59,4)
//
(p0)  fadd.s1 FR_S_lo = FR_S_lo, FR_BB 
	nop.i 999 ;;
}

{ .mii
	nop.m 999
	nop.i 999 ;;
//
//    Offset_to_Z1 = 24 * Index1
//    For performance, don't use result
//    for 3 or 4 cycles.
//
(p0)  add GR_Table_ptr = GR_Table_ptr, GR_Table_Base ;; 
}
//
//    Add Base to Offset for Z1
//    Create Bias

{ .mmi
(p0)  ld4 GR_Z_1 = [GR_Table_ptr],4 ;; 
(p0)  ldfs  FR_G = [GR_Table_ptr],4 
	nop.i 999 ;;
}

{ .mmi
(p0)  ldfs  FR_H = [GR_Table_ptr],8 ;; 
(p0)  ldfd  FR_h = [GR_Table_ptr],0 
(p0)  pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 
}
//
//    Load Z_1 
//    Get Base of Table2 
//

{ .mfi
(p0)  getf.exp GR_M = FR_abs_W 
	nop.f 999
	nop.i 999 ;;
}

{ .mii
	nop.m 999
	nop.i 999 ;;
//
//    M = getf.exp(abs_W)
//    S_lo = AA - Z
//    X_1 = pmpyshr2(X_0,Z_1,15)
//
(p0)  sub GR_M = GR_M, GR_Bias ;; 
}
//     
//    M = M - Bias
//    Load G1
//    N = getf.exp(Z)
//

{ .mii
(p0)  cmp.gt.unc  p11, p0 =  -80, GR_M 
(p0)  cmp.gt.unc  p12, p0 =  -7, GR_M ;; 
(p0)  extr.u GR_Index2 = GR_X_1, 6, 4 ;; 
}

{ .mib
	nop.m 999
//
//    if -80 > M, set p11
//    Index2 = extr.u(X_1,6,4)
//    if -7  > M, set p12
//    Load H1
//
(p0)  pmpyshr2.u GR_Index2 = GR_Index2,GR_Table_Scale,0 
(p11) br.cond.spnt L(log1pf_small) ;; 
}

{ .mib
      nop.m 999
	nop.i 999
(p12) br.cond.spnt L(log1pf_near) ;; 
}

{ .mii
(p0)  sub GR_N = GR_N, GR_Bias 
//
//    poly_lo = r * poly_lo 
//
(p0)  add GR_Perturb = 0x1, r0 ;; 
(p0)  sub GR_ScaleN = GR_Bias, GR_N  
}

{ .mii
(p0)  setf.sig FR_float_N = GR_N 
	nop.i 999 ;;
//
//    Prepare Index2 - pmpyshr2.u(X_1,Z_2,15)
//    Load h1
//    S_lo = S_lo + BB 
//    Branch for -80 > M
//   
(p0)  add GR_Index2 = GR_Index2, GR_Table_Base1
}

{ .mmi
(p0)  setf.exp FR_two_negN = GR_ScaleN 
      nop.m 999
(p0)  addl GR_Table_Base = @ltoff(Constants_Z_G_H_h3#),gp  
};;

//
//    Index2 points to Z2
//    Branch for -7 > M
//

{ .mmb
(p0)  ld4 GR_Z_2 = [GR_Index2],4 
      ld8 GR_Table_Base = [GR_Table_Base]
      nop.b 999 ;;
}
(p0)  nop.i 999
//
//    Load Z_2
//    N = N - Bias
//    Tablebase points to Table3
//

{ .mmi
(p0)  ldfs  FR_G_tmp = [GR_Index2],4 ;; 
//
//    Load G_2
//    pmpyshr2  X_2= (X_1,Z_2,15)
//    float_N = setf.sig(N)
//    ScaleN = Bias - N
//
(p0)  ldfs  FR_H_tmp = [GR_Index2],8 
	nop.i 999 ;;
}
//
//    Load H_2
//    two_negN = setf.exp(scaleN)
//    G = G_1 * G_2
//

{ .mfi
(p0)  ldfd  FR_h_tmp = [GR_Index2],0 
	nop.f 999
(p0)  pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 ;; 
}

{ .mii
	nop.m 999
(p0)  extr.u GR_Index3 = GR_X_2, 1, 5 ;; 
//
//    Load h_2
//    H = H_1 + H_2 
//    h = h_1 + h_2 
//    Index3 = extr.u(X_2,1,5)
//
(p0)  shladd GR_Index3 = GR_Index3,4,GR_Table_Base 
}

{ .mmi
	nop.m 999
	nop.m 999
//
//    float_N = fcvt.xf(float_N)
//    load G3
//
(p0)  addl GR_Table_Base = @ltoff(Constants_Q#),gp ;; 
}

{ .mfi
ld8    GR_Table_Base = [GR_Table_Base]
nop.f 999
nop.i 999
} ;;

{ .mfi
(p0)  ldfe FR_log2_hi = [GR_Table_Base],16 
(p0)  fmpy.s1 FR_S_lo = FR_S_lo, FR_two_negN 
	nop.i 999 ;;
}

{ .mmf
	nop.m 999
//
//    G = G3 * G
//    Load h3
//    Load log2_hi
//    H = H + H3
//
(p0)  ldfe FR_log2_lo = [GR_Table_Base],16 
(p0)  fmpy.s1 FR_G = FR_G, FR_G_tmp ;; 
}

{ .mmf
(p0)  ldfs  FR_G_tmp = [GR_Index3],4 
//
//    h = h + h3
//    r = G * S_hi + 1 
//    Load log2_lo
//
(p0)  ldfe FR_Q4 = [GR_Table_Base],16 
(p0)  fadd.s1 FR_h = FR_h, FR_h_tmp ;; 
}

{ .mfi
(p0)  ldfe FR_Q3 = [GR_Table_Base],16 
(p0)  fadd.s1 FR_H = FR_H, FR_H_tmp 
	nop.i 999 ;;
}

{ .mmf
(p0)  ldfs  FR_H_tmp = [GR_Index3],4 
(p0)  ldfe FR_Q2 = [GR_Table_Base],16 
//
//    Comput Index for Table3
//    S_lo = S_lo * two_negN
//
(p0)  fcvt.xf FR_float_N = FR_float_N ;; 
}
//
//    If S_lo == 0, set p8 false
//    Load H3
//    Load ptr to table of polynomial coeff.
//

{ .mmf
(p0)  ldfd  FR_h_tmp = [GR_Index3],0 
(p0)  ldfe FR_Q1 = [GR_Table_Base],0 
(p0)  fcmp.eq.unc.s1 p0, p8 =  FR_S_lo, f0 ;; 
}

{ .mfi
	nop.m 999
(p0)  fmpy.s1 FR_G = FR_G, FR_G_tmp 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fadd.s1 FR_H = FR_H, FR_H_tmp 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fms.s1 FR_r = FR_G, FR_S_hi, f1 
	nop.i 999
}

{ .mfi
	nop.m 999
(p0)  fadd.s1 FR_h = FR_h, FR_h_tmp 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
//
//    Load Q4 
//    Load Q3 
//    Load Q2 
//    Load Q1 
//
(p8) fma.s1 FR_r = FR_G, FR_S_lo, FR_r 
	nop.i 999
}

{ .mfi
	nop.m 999
//
//    poly_lo = r * Q4 + Q3
//    rsq = r* r
//
(p0)  fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
//
//    If (S_lo!=0) r = s_lo * G + r
//
(p0)  fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 
	nop.i 999
}
//
//    Create a 0x00000....01
//    poly_lo = poly_lo * rsq + h
//

{ .mfi
(p0)  setf.sig FR_dummy = GR_Perturb 
(p0)  fmpy.s1 FR_rsq = FR_r, FR_r 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
//
//    h = N * log2_lo + h 
//    Y_hi = n * log2_hi + H 
//
(p0)  fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 
	nop.i 999
}

{ .mfi
	nop.m 999
(p0)  fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
//
//    poly_lo = r * poly_o + Q2 
//    poly_hi = Q1 * rsq + r 
//
(p0)  fmpy.s1 FR_poly_lo = FR_poly_lo, FR_r 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fma.s1 FR_poly_lo = FR_poly_lo, FR_rsq, FR_h 
	nop.i 999 ;;
}

{ .mfb
	nop.m 999
(p0)  fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo 
//
//    Create the FR for a binary "or"
//    Y_lo = poly_hi + poly_lo
//
// (p0)  for FR_dummy = FR_Y_lo,FR_dummy ;;
//
//    Turn the lsb of Y_lo ON
//
// (p0)  fmerge.se FR_Y_lo =  FR_Y_lo,FR_dummy ;;
//
//    Merge the new lsb into Y_lo, for alone doesn't
//
(p0)  br.cond.sptk L(LOG_main) ;; 
}


L(log1pf_near): 

{ .mmi
	nop.m 999
	nop.m 999
//    /*******************************************************/
//    /*********** Branch log1pf_near  ************************/
//    /*******************************************************/
(p0)  addl GR_Table_Base = @ltoff(Constants_P#),gp ;; 
}
//
//    Load base address of poly. coeff.
//
{.mmi
      nop.m 999
      ld8    GR_Table_Base = [GR_Table_Base]
      nop.i 999
};;

{ .mmb
(p0)  add GR_Table_ptr = 0x40,GR_Table_Base  
//
//    Address tables with separate pointers 
//
(p0)  ldfe FR_P8 = [GR_Table_Base],16 
	nop.b 999 ;;
}

{ .mmb
(p0)  ldfe FR_P4 = [GR_Table_ptr],16 
//
//    Load P4
//    Load P8
//
(p0)  ldfe FR_P7 = [GR_Table_Base],16 
	nop.b 999 ;;
}

{ .mmf
(p0)  ldfe FR_P3 = [GR_Table_ptr],16 
//
//    Load P3
//    Load P7
//
(p0)  ldfe FR_P6 = [GR_Table_Base],16 
(p0)  fmpy.s1 FR_wsq = FR_W, FR_W ;; 
}

{ .mfi
(p0)  ldfe FR_P2 = [GR_Table_ptr],16 
	nop.f 999
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fma.s1 FR_Y_hi = FR_W, FR_P4, FR_P3 
	nop.i 999
}
//
//    Load P2
//    Load P6
//    Wsq = w * w
//    Y_hi = p4 * w + p3
//

{ .mfi
(p0)  ldfe FR_P5 = [GR_Table_Base],16 
(p0)  fma.s1 FR_Y_lo = FR_W, FR_P8, FR_P7 
	nop.i 999 ;;
}

{ .mfi
(p0)  ldfe FR_P1 = [GR_Table_ptr],16 
//
//    Load P1
//    Load P5
//    Y_lo = p8 * w + P7
//
(p0)  fmpy.s1 FR_w4 = FR_wsq, FR_wsq 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P2 
	nop.i 999
}

{ .mfi
	nop.m 999
(p0)  fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P6 
(p0)  add GR_Perturb = 0x1, r0 ;; 
}

{ .mfi
	nop.m 999
//
//    w4 = w2 * w2 
//    Y_hi = y_hi * w + p2 
//    Y_lo = y_lo * w + p6 
//    Create perturbation bit
//
(p0)  fmpy.s1 FR_w6 = FR_w4, FR_wsq 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P1 
	nop.i 999
}
//
//    Y_hi = y_hi * w + p1 
//    w6 = w4 * w2 
//

{ .mfi
(p0)  setf.sig FR_Q4 = GR_Perturb 
(p0)  fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P5 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fma.s1 FR_Y_hi = FR_wsq,FR_Y_hi, FR_W 
	nop.i 999
}

{ .mfb
	nop.m 999
//
//    Y_hi = y_hi * wsq + w 
//    Y_lo = y_lo * w + p5 
//
(p0)  fmpy.s1 FR_Y_lo = FR_w6, FR_Y_lo 
//
//    Y_lo = y_lo * w6  
//
// (p0)  for FR_dummy = FR_Y_lo,FR_dummy ;;
//
//    Set lsb on: Taken out to improve performance 
//
// (p0)  fmerge.se FR_Y_lo =  FR_Y_lo,FR_dummy ;;
//
//    Make sure it's on in Y_lo also.  Taken out to improve
//    performance
//
(p0)  br.cond.sptk L(LOG_main) ;; 
}


L(log1pf_small): 

{ .mmi
	nop.m 999
	nop.m 999
//  /*******************************************************/
//  /*********** Branch log1pf_small  ***********************/
//  /*******************************************************/
(p0)  addl GR_Table_Base = @ltoff(Constants_Threshold#),gp 
}

{ .mfi
	nop.m 999
(p0)  mov FR_Em1 = FR_W 
(p0)  cmp.eq.unc  p7, p0 = r0, r0 ;; 
}

{ .mlx
      ld8    GR_Table_Base = [GR_Table_Base]
(p0)  movl GR_Expo_Range = 0x0000000000000002 ;; 
}
//
//    Set Safe to true
//    Set Expo_Range = 0 for single
//    Set Expo_Range = 2 for double 
//    Set Expo_Range = 4 for double-extended 
//

{ .mmi
(p0)  shladd GR_Table_Base = GR_Expo_Range,4,GR_Table_Base ;; 
(p0)  ldfe FR_Threshold = [GR_Table_Base],16 
	nop.i 999
}

{ .mlx
	nop.m 999
(p0)  movl GR_Bias = 0x000000000000FF9B ;; 
}

{ .mfi
(p0)  ldfe FR_Tiny = [GR_Table_Base],0 
	nop.f 999
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p0)  fcmp.gt.unc.s1 p13, p12 =  FR_abs_W, FR_Threshold 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p13) fnmpy.s1 FR_Y_lo = FR_W, FR_W 
	nop.i 999
}

{ .mfi
	nop.m 999
(p13) fadd FR_SCALE = f0, f1 
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p12) fsub.s1 FR_Y_lo = f0, FR_Tiny 
(p12) cmp.ne.unc  p7, p0 = r0, r0 
}

{ .mfi
(p12) setf.exp FR_SCALE = GR_Bias 
	nop.f 999
	nop.i 999 ;;
}

//
//    Set p7 to SAFE = FALSE
//    Set Scale = 2^-100 
//
{ .mfb
	nop.m 999
(p0)  fma.s.s0 FR_Input_X = FR_Y_lo,FR_SCALE,FR_Y_hi
(p0)  br.ret.sptk   b0
}
;;

L(LOG_64_one): 

{ .mfb
	nop.m 999
(p0)  fmpy.s.s0 FR_Input_X = FR_Input_X, f0 
(p0)  br.ret.sptk   b0
}
;;
//    
//    Raise divide by zero for +/-0 input.
//    

L(LOG_64_zero): 

{ .mfi
(p0)  mov   GR_Parameter_TAG = 142 
//
//    If we have log1pf(0), return -Inf.
//  
(p0)  fsub.s0 FR_Output_X_tmp = f0, f1 
      nop.i 999 ;;
}
{ .mfb
      nop.m 999
(p0)  frcpa.s0 FR_Output_X_tmp, p8 =  FR_Output_X_tmp, f0 
(p0)  br.cond.sptk L(LOG_ERROR_Support) ;; 
}

L(LOG_64_special): 

{ .mfi
      nop.m 999
//    
//    Return -Inf or value from handler.
//    
(p0)  fclass.m.unc p7, p0 =  FR_Input_X, 0x1E1 
      nop.i 999 ;;
}

{ .mfb
      nop.m 999
//     
//    Check for Natval, QNan, SNaN, +Inf   
//    
(p7)  fmpy.s.s0  f8 =  FR_Input_X, f1 
//     
//    For SNaN raise invalid and return QNaN.
//    For QNaN raise invalid and return QNaN.
//    For +Inf return +Inf.
//    
(p7)  br.ret.sptk   b0
}
;;

//    
//    For -Inf raise invalid and return QNaN.
//    

{ .mfb
(p0)  mov   GR_Parameter_TAG = 143 
(p0)  fmpy.s.s0  FR_Output_X_tmp =  FR_Input_X, f0 
(p0)  br.cond.sptk L(LOG_ERROR_Support) ;; 
}

//
//    Report that log1pf(-Inf) computed
//     

L(LOG_64_unsupported): 

//    
//    Return generated NaN or other value .
//    

{ .mfb
      nop.m 999
(p0)  fmpy.s.s0 FR_Input_X = FR_Input_X, f0 
(p0)  br.ret.sptk   b0 ;;
}

L(LOG_64_negative): 

{ .mfi
      nop.m 999
//     
//    Deal with x < 0 in a special way 
//    
(p0)  frcpa.s0 FR_Output_X_tmp, p8 =  f0, f0 
//     
//    Deal with x < 0 in a special way - raise
//    invalid and produce QNaN indefinite.
//    
(p0)  mov   GR_Parameter_TAG = 143;;
}

.endp log1pf#
ASM_SIZE_DIRECTIVE(log1pf)

.proc __libm_error_region
__libm_error_region:
L(LOG_ERROR_Support): 
.prologue

// (1)
{ .mfi
        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
        nop.f 0
.save   ar.pfs,GR_SAVE_PFS
        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
}
{ .mfi
.fframe 64
        add sp=-64,sp                          // Create new stack
        nop.f 0
        mov GR_SAVE_GP=gp                      // Save gp
};;


// (2)
{ .mmi
        stfs [GR_Parameter_Y] = f0,16         // STORE Parameter 2 on stack
        add GR_Parameter_X = 16,sp            // Parameter 1 address
.save   b0, GR_SAVE_B0
        mov GR_SAVE_B0=b0                     // Save b0
};;

.body
// (3)
{ .mib
        stfs [GR_Parameter_X] =FR_Input_X               // STORE Parameter 1 on stack
        add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
        nop.b 0                                      
}
{ .mib
        stfs [GR_Parameter_Y] = FR_Output_X_tmp         // STORE Parameter 3 on stack
        add   GR_Parameter_Y = -16,GR_Parameter_Y
        br.call.sptk b0=__libm_error_support#           // Call error handling function
};;
{ .mmi
        nop.m 0
        nop.m 0
        add   GR_Parameter_RESULT = 48,sp
};;

// (4)
{ .mmi
        ldfs  FR_Input_X = [GR_Parameter_RESULT]       // Get return result off stack
.restore sp
        add   sp = 64,sp                       // Restore stack pointer
        mov   b0 = GR_SAVE_B0                  // Restore return address
};;
{ .mib
        mov   gp = GR_SAVE_GP                  // Restore gp
        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
        br.ret.sptk   b0 
};;

.endp __libm_error_region
ASM_SIZE_DIRECTIVE(__libm_error_region)


.proc __libm_LOG_main 
__libm_LOG_main:
L(LOG_main): 

//
//    kernel_log_64 computes ln(X + E)
//

{ .mfi
	nop.m 999
(p7)  fadd.s.s0 FR_Input_X = FR_Y_lo,FR_Y_hi
        nop.i 999
}

{ .mmi
	nop.m 999
	nop.m 999
(p14) addl GR_Table_Base = @ltoff(Constants_1_by_LN10#),gp ;; 
}

{ .mmi
      nop.m 999
(p14) ld8    GR_Table_Base = [GR_Table_Base]
      nop.i 999
};;

{ .mmi
(p14) ldfe FR_1LN10_hi = [GR_Table_Base],16 ;; 
(p14) ldfe FR_1LN10_lo = [GR_Table_Base]
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p14) fmpy.s1 FR_Output_X_tmp = FR_Y_lo,FR_1LN10_hi
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
(p14) fma.s1  FR_Output_X_tmp = FR_Y_hi,FR_1LN10_lo,FR_Output_X_tmp
	nop.i 999 ;;
}

{ .mfb
	nop.m 999
(p14) fma.s.s0 FR_Input_X = FR_Y_hi,FR_1LN10_hi,FR_Output_X_tmp
(p0)  br.ret.sptk   b0 ;; 
}
.endp __libm_LOG_main
ASM_SIZE_DIRECTIVE(__libm_LOG_main)


.type   __libm_error_support#,@function
.global __libm_error_support#