aboutsummaryrefslogtreecommitdiff
blob: beaf53be0bdb345af413f808e3daa036374a4b58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/* Parser generator */

/* For a description, see the comments at end of this file */

#include "Python.h"
#include "pgenheaders.h"
#include "token.h"
#include "node.h"
#include "grammar.h"
#include "metagrammar.h"
#include "pgen.h"

extern int Py_DebugFlag;
extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */


/* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */

typedef struct _nfaarc {
    int         ar_label;
    int         ar_arrow;
} nfaarc;

typedef struct _nfastate {
    int         st_narcs;
    nfaarc      *st_arc;
} nfastate;

typedef struct _nfa {
    int                 nf_type;
    char                *nf_name;
    int                 nf_nstates;
    nfastate            *nf_state;
    int                 nf_start, nf_finish;
} nfa;

/* Forward */
static void compile_rhs(labellist *ll,
                        nfa *nf, node *n, int *pa, int *pb);
static void compile_alt(labellist *ll,
                        nfa *nf, node *n, int *pa, int *pb);
static void compile_item(labellist *ll,
                         nfa *nf, node *n, int *pa, int *pb);
static void compile_atom(labellist *ll,
                         nfa *nf, node *n, int *pa, int *pb);

static int
addnfastate(nfa *nf)
{
    nfastate *st;

    nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state,
                                sizeof(nfastate) * (nf->nf_nstates + 1));
    if (nf->nf_state == NULL)
        Py_FatalError("out of mem");
    st = &nf->nf_state[nf->nf_nstates++];
    st->st_narcs = 0;
    st->st_arc = NULL;
    return st - nf->nf_state;
}

static void
addnfaarc(nfa *nf, int from, int to, int lbl)
{
    nfastate *st;
    nfaarc *ar;

    st = &nf->nf_state[from];
    st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc,
                                  sizeof(nfaarc) * (st->st_narcs + 1));
    if (st->st_arc == NULL)
        Py_FatalError("out of mem");
    ar = &st->st_arc[st->st_narcs++];
    ar->ar_label = lbl;
    ar->ar_arrow = to;
}

static nfa *
newnfa(char *name)
{
    nfa *nf;
    static int type = NT_OFFSET; /* All types will be disjunct */

    nf = (nfa *)PyObject_MALLOC(sizeof(nfa));
    if (nf == NULL)
        Py_FatalError("no mem for new nfa");
    nf->nf_type = type++;
    nf->nf_name = name; /* XXX strdup(name) ??? */
    nf->nf_nstates = 0;
    nf->nf_state = NULL;
    nf->nf_start = nf->nf_finish = -1;
    return nf;
}

typedef struct _nfagrammar {
    int                 gr_nnfas;
    nfa                 **gr_nfa;
    labellist           gr_ll;
} nfagrammar;

/* Forward */
static void compile_rule(nfagrammar *gr, node *n);

static nfagrammar *
newnfagrammar(void)
{
    nfagrammar *gr;

    gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar));
    if (gr == NULL)
        Py_FatalError("no mem for new nfa grammar");
    gr->gr_nnfas = 0;
    gr->gr_nfa = NULL;
    gr->gr_ll.ll_nlabels = 0;
    gr->gr_ll.ll_label = NULL;
    addlabel(&gr->gr_ll, ENDMARKER, "EMPTY");
    return gr;
}

static nfa *
addnfa(nfagrammar *gr, char *name)
{
    nfa *nf;

    nf = newnfa(name);
    gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa,
                                  sizeof(nfa*) * (gr->gr_nnfas + 1));
    if (gr->gr_nfa == NULL)
        Py_FatalError("out of mem");
    gr->gr_nfa[gr->gr_nnfas++] = nf;
    addlabel(&gr->gr_ll, NAME, nf->nf_name);
    return nf;
}

#ifdef Py_DEBUG

static char REQNFMT[] = "metacompile: less than %d children\n";

#define REQN(i, count) \
    if (i < count) { \
        fprintf(stderr, REQNFMT, count); \
        Py_FatalError("REQN"); \
    } else

#else
#define REQN(i, count)  /* empty */
#endif

static nfagrammar *
metacompile(node *n)
{
    nfagrammar *gr;
    int i;

    if (Py_DebugFlag)
        printf("Compiling (meta-) parse tree into NFA grammar\n");
    gr = newnfagrammar();
    REQ(n, MSTART);
    i = n->n_nchildren - 1; /* Last child is ENDMARKER */
    n = n->n_child;
    for (; --i >= 0; n++) {
        if (n->n_type != NEWLINE)
            compile_rule(gr, n);
    }
    return gr;
}

static void
compile_rule(nfagrammar *gr, node *n)
{
    nfa *nf;

    REQ(n, RULE);
    REQN(n->n_nchildren, 4);
    n = n->n_child;
    REQ(n, NAME);
    nf = addnfa(gr, n->n_str);
    n++;
    REQ(n, COLON);
    n++;
    REQ(n, RHS);
    compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish);
    n++;
    REQ(n, NEWLINE);
}

static void
compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
{
    int i;
    int a, b;

    REQ(n, RHS);
    i = n->n_nchildren;
    REQN(i, 1);
    n = n->n_child;
    REQ(n, ALT);
    compile_alt(ll, nf, n, pa, pb);
    if (--i <= 0)
        return;
    n++;
    a = *pa;
    b = *pb;
    *pa = addnfastate(nf);
    *pb = addnfastate(nf);
    addnfaarc(nf, *pa, a, EMPTY);
    addnfaarc(nf, b, *pb, EMPTY);
    for (; --i >= 0; n++) {
        REQ(n, VBAR);
        REQN(i, 1);
        --i;
        n++;
        REQ(n, ALT);
        compile_alt(ll, nf, n, &a, &b);
        addnfaarc(nf, *pa, a, EMPTY);
        addnfaarc(nf, b, *pb, EMPTY);
    }
}

static void
compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
{
    int i;
    int a, b;

    REQ(n, ALT);
    i = n->n_nchildren;
    REQN(i, 1);
    n = n->n_child;
    REQ(n, ITEM);
    compile_item(ll, nf, n, pa, pb);
    --i;
    n++;
    for (; --i >= 0; n++) {
        REQ(n, ITEM);
        compile_item(ll, nf, n, &a, &b);
        addnfaarc(nf, *pb, a, EMPTY);
        *pb = b;
    }
}

static void
compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
{
    int i;
    int a, b;

    REQ(n, ITEM);
    i = n->n_nchildren;
    REQN(i, 1);
    n = n->n_child;
    if (n->n_type == LSQB) {
        REQN(i, 3);
        n++;
        REQ(n, RHS);
        *pa = addnfastate(nf);
        *pb = addnfastate(nf);
        addnfaarc(nf, *pa, *pb, EMPTY);
        compile_rhs(ll, nf, n, &a, &b);
        addnfaarc(nf, *pa, a, EMPTY);
        addnfaarc(nf, b, *pb, EMPTY);
        REQN(i, 1);
        n++;
        REQ(n, RSQB);
    }
    else {
        compile_atom(ll, nf, n, pa, pb);
        if (--i <= 0)
            return;
        n++;
        addnfaarc(nf, *pb, *pa, EMPTY);
        if (n->n_type == STAR)
            *pb = *pa;
        else
            REQ(n, PLUS);
    }
}

static void
compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
{
    int i;

    REQ(n, ATOM);
    i = n->n_nchildren;
    REQN(i, 1);
    n = n->n_child;
    if (n->n_type == LPAR) {
        REQN(i, 3);
        n++;
        REQ(n, RHS);
        compile_rhs(ll, nf, n, pa, pb);
        n++;
        REQ(n, RPAR);
    }
    else if (n->n_type == NAME || n->n_type == STRING) {
        *pa = addnfastate(nf);
        *pb = addnfastate(nf);
        addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str));
    }
    else
        REQ(n, NAME);
}

static void
dumpstate(labellist *ll, nfa *nf, int istate)
{
    nfastate *st;
    int i;
    nfaarc *ar;

    printf("%c%2d%c",
        istate == nf->nf_start ? '*' : ' ',
        istate,
        istate == nf->nf_finish ? '.' : ' ');
    st = &nf->nf_state[istate];
    ar = st->st_arc;
    for (i = 0; i < st->st_narcs; i++) {
        if (i > 0)
            printf("\n    ");
        printf("-> %2d  %s", ar->ar_arrow,
            PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label]));
        ar++;
    }
    printf("\n");
}

static void
dumpnfa(labellist *ll, nfa *nf)
{
    int i;

    printf("NFA '%s' has %d states; start %d, finish %d\n",
        nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish);
    for (i = 0; i < nf->nf_nstates; i++)
        dumpstate(ll, nf, i);
}


/* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */

static void
addclosure(bitset ss, nfa *nf, int istate)
{
    if (addbit(ss, istate)) {
        nfastate *st = &nf->nf_state[istate];
        nfaarc *ar = st->st_arc;
        int i;

        for (i = st->st_narcs; --i >= 0; ) {
            if (ar->ar_label == EMPTY)
                addclosure(ss, nf, ar->ar_arrow);
            ar++;
        }
    }
}

typedef struct _ss_arc {
    bitset      sa_bitset;
    int         sa_arrow;
    int         sa_label;
} ss_arc;

typedef struct _ss_state {
    bitset      ss_ss;
    int         ss_narcs;
    struct _ss_arc      *ss_arc;
    int         ss_deleted;
    int         ss_finish;
    int         ss_rename;
} ss_state;

typedef struct _ss_dfa {
    int         sd_nstates;
    ss_state *sd_state;
} ss_dfa;

/* Forward */
static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
                       labellist *ll, char *msg);
static void simplify(int xx_nstates, ss_state *xx_state);
static void convert(dfa *d, int xx_nstates, ss_state *xx_state);

static void
makedfa(nfagrammar *gr, nfa *nf, dfa *d)
{
    int nbits = nf->nf_nstates;
    bitset ss;
    int xx_nstates;
    ss_state *xx_state, *yy;
    ss_arc *zz;
    int istate, jstate, iarc, jarc, ibit;
    nfastate *st;
    nfaarc *ar;

    ss = newbitset(nbits);
    addclosure(ss, nf, nf->nf_start);
    xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state));
    if (xx_state == NULL)
        Py_FatalError("no mem for xx_state in makedfa");
    xx_nstates = 1;
    yy = &xx_state[0];
    yy->ss_ss = ss;
    yy->ss_narcs = 0;
    yy->ss_arc = NULL;
    yy->ss_deleted = 0;
    yy->ss_finish = testbit(ss, nf->nf_finish);
    if (yy->ss_finish)
        printf("Error: nonterminal '%s' may produce empty.\n",
            nf->nf_name);

    /* This algorithm is from a book written before
       the invention of structured programming... */

    /* For each unmarked state... */
    for (istate = 0; istate < xx_nstates; ++istate) {
        size_t size;
        yy = &xx_state[istate];
        ss = yy->ss_ss;
        /* For all its states... */
        for (ibit = 0; ibit < nf->nf_nstates; ++ibit) {
            if (!testbit(ss, ibit))
                continue;
            st = &nf->nf_state[ibit];
            /* For all non-empty arcs from this state... */
            for (iarc = 0; iarc < st->st_narcs; iarc++) {
                ar = &st->st_arc[iarc];
                if (ar->ar_label == EMPTY)
                    continue;
                /* Look up in list of arcs from this state */
                for (jarc = 0; jarc < yy->ss_narcs; ++jarc) {
                    zz = &yy->ss_arc[jarc];
                    if (ar->ar_label == zz->sa_label)
                        goto found;
                }
                /* Add new arc for this state */
                size = sizeof(ss_arc) * (yy->ss_narcs + 1);
                yy->ss_arc = (ss_arc *)PyObject_REALLOC(
                                            yy->ss_arc, size);
                if (yy->ss_arc == NULL)
                    Py_FatalError("out of mem");
                zz = &yy->ss_arc[yy->ss_narcs++];
                zz->sa_label = ar->ar_label;
                zz->sa_bitset = newbitset(nbits);
                zz->sa_arrow = -1;
             found:             ;
                /* Add destination */
                addclosure(zz->sa_bitset, nf, ar->ar_arrow);
            }
        }
        /* Now look up all the arrow states */
        for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) {
            zz = &xx_state[istate].ss_arc[jarc];
            for (jstate = 0; jstate < xx_nstates; jstate++) {
                if (samebitset(zz->sa_bitset,
                    xx_state[jstate].ss_ss, nbits)) {
                    zz->sa_arrow = jstate;
                    goto done;
                }
            }
            size = sizeof(ss_state) * (xx_nstates + 1);
            xx_state = (ss_state *)PyObject_REALLOC(xx_state,
                                                        size);
            if (xx_state == NULL)
                Py_FatalError("out of mem");
            zz->sa_arrow = xx_nstates;
            yy = &xx_state[xx_nstates++];
            yy->ss_ss = zz->sa_bitset;
            yy->ss_narcs = 0;
            yy->ss_arc = NULL;
            yy->ss_deleted = 0;
            yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish);
         done:          ;
        }
    }

    if (Py_DebugFlag)
        printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
                                        "before minimizing");

    simplify(xx_nstates, xx_state);

    if (Py_DebugFlag)
        printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
                                        "after minimizing");

    convert(d, xx_nstates, xx_state);

    /* XXX cleanup */
    PyObject_FREE(xx_state);
}

static void
printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
           labellist *ll, char *msg)
{
    int i, ibit, iarc;
    ss_state *yy;
    ss_arc *zz;

    printf("Subset DFA %s\n", msg);
    for (i = 0; i < xx_nstates; i++) {
        yy = &xx_state[i];
        if (yy->ss_deleted)
            continue;
        printf(" Subset %d", i);
        if (yy->ss_finish)
            printf(" (finish)");
        printf(" { ");
        for (ibit = 0; ibit < nbits; ibit++) {
            if (testbit(yy->ss_ss, ibit))
                printf("%d ", ibit);
        }
        printf("}\n");
        for (iarc = 0; iarc < yy->ss_narcs; iarc++) {
            zz = &yy->ss_arc[iarc];
            printf("  Arc to state %d, label %s\n",
                zz->sa_arrow,
                PyGrammar_LabelRepr(
                    &ll->ll_label[zz->sa_label]));
        }
    }
}


/* PART THREE -- SIMPLIFY DFA */

/* Simplify the DFA by repeatedly eliminating states that are
   equivalent to another oner.  This is NOT Algorithm 3.3 from
   [Aho&Ullman 77].  It does not always finds the minimal DFA,
   but it does usually make a much smaller one...  (For an example
   of sub-optimal behavior, try S: x a b+ | y a b+.)
*/

static int
samestate(ss_state *s1, ss_state *s2)
{
    int i;

    if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish)
        return 0;
    for (i = 0; i < s1->ss_narcs; i++) {
        if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow ||
            s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label)
            return 0;
    }
    return 1;
}

static void
renamestates(int xx_nstates, ss_state *xx_state, int from, int to)
{
    int i, j;

    if (Py_DebugFlag)
        printf("Rename state %d to %d.\n", from, to);
    for (i = 0; i < xx_nstates; i++) {
        if (xx_state[i].ss_deleted)
            continue;
        for (j = 0; j < xx_state[i].ss_narcs; j++) {
            if (xx_state[i].ss_arc[j].sa_arrow == from)
                xx_state[i].ss_arc[j].sa_arrow = to;
        }
    }
}

static void
simplify(int xx_nstates, ss_state *xx_state)
{
    int changes;
    int i, j;

    do {
        changes = 0;
        for (i = 1; i < xx_nstates; i++) {
            if (xx_state[i].ss_deleted)
                continue;
            for (j = 0; j < i; j++) {
                if (xx_state[j].ss_deleted)
                    continue;
                if (samestate(&xx_state[i], &xx_state[j])) {
                    xx_state[i].ss_deleted++;
                    renamestates(xx_nstates, xx_state,
                                 i, j);
                    changes++;
                    break;
                }
            }
        }
    } while (changes);
}


/* PART FOUR -- GENERATE PARSING TABLES */

/* Convert the DFA into a grammar that can be used by our parser */

static void
convert(dfa *d, int xx_nstates, ss_state *xx_state)
{
    int i, j;
    ss_state *yy;
    ss_arc *zz;

    for (i = 0; i < xx_nstates; i++) {
        yy = &xx_state[i];
        if (yy->ss_deleted)
            continue;
        yy->ss_rename = addstate(d);
    }

    for (i = 0; i < xx_nstates; i++) {
        yy = &xx_state[i];
        if (yy->ss_deleted)
            continue;
        for (j = 0; j < yy->ss_narcs; j++) {
            zz = &yy->ss_arc[j];
            addarc(d, yy->ss_rename,
                xx_state[zz->sa_arrow].ss_rename,
                zz->sa_label);
        }
        if (yy->ss_finish)
            addarc(d, yy->ss_rename, yy->ss_rename, 0);
    }

    d->d_initial = 0;
}


/* PART FIVE -- GLUE IT ALL TOGETHER */

static grammar *
maketables(nfagrammar *gr)
{
    int i;
    nfa *nf;
    dfa *d;
    grammar *g;

    if (gr->gr_nnfas == 0)
        return NULL;
    g = newgrammar(gr->gr_nfa[0]->nf_type);
                    /* XXX first rule must be start rule */
    g->g_ll = gr->gr_ll;

    for (i = 0; i < gr->gr_nnfas; i++) {
        nf = gr->gr_nfa[i];
        if (Py_DebugFlag) {
            printf("Dump of NFA for '%s' ...\n", nf->nf_name);
            dumpnfa(&gr->gr_ll, nf);
            printf("Making DFA for '%s' ...\n", nf->nf_name);
        }
        d = adddfa(g, nf->nf_type, nf->nf_name);
        makedfa(gr, gr->gr_nfa[i], d);
    }

    return g;
}

grammar *
pgen(node *n)
{
    nfagrammar *gr;
    grammar *g;

    gr = metacompile(n);
    g = maketables(gr);
    translatelabels(g);
    addfirstsets(g);
    PyObject_FREE(gr);
    return g;
}

grammar *
Py_pgen(node *n)
{
  return pgen(n);
}

/*

Description
-----------

Input is a grammar in extended BNF (using * for repetition, + for
at-least-once repetition, [] for optional parts, | for alternatives and
() for grouping).  This has already been parsed and turned into a parse
tree.

Each rule is considered as a regular expression in its own right.
It is turned into a Non-deterministic Finite Automaton (NFA), which
is then turned into a Deterministic Finite Automaton (DFA), which is then
optimized to reduce the number of states.  See [Aho&Ullman 77] chapter 3,
or similar compiler books (this technique is more often used for lexical
analyzers).

The DFA's are used by the parser as parsing tables in a special way
that's probably unique.  Before they are usable, the FIRST sets of all
non-terminals are computed.

Reference
---------

[Aho&Ullman 77]
    Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977
    (first edition)

*/