1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
# -*- coding: iso-8859-1 -*-
"""
RPython implementation of MD5 checksums.
See also the pure Python implementation in lib_pypy/md5.py, which might
or might not be faster than this one on top of CPython.
This is an implementation of the MD5 hash function,
as specified by RFC 1321. It was implemented using Bruce Schneier's
excellent book "Applied Cryptography", 2nd ed., 1996.
This module tries to follow the API of the CPython md5 module.
Long history:
By Dinu C. Gherman. BEWARE: this comes with no guarantee whatsoever
about fitness and/or other properties! Specifically, do not use this
in any production code! License is Python License! (Re-licensing
under the MIT would be great, though)
Special thanks to Aurelian Coman who fixed some nasty bugs!
Modernised by J. Hall�n and L. Creighton for Pypy.
Converted to RPython by arigo.
"""
from rpython.rlib.rarithmetic import r_uint, r_ulonglong
if r_uint.BITS == 32:
def _rotateLeft(x, n):
"Rotate x (32 bit) left n bits circularly."
return (x << n) | (x >> (32-n))
else:
def _rotateLeft_emulator(x, n):
x &= 0xFFFFFFFF
return (x << n) | (x >> (32-n))
# ----- start of custom code, think about something better... -----
from rpython.rtyper.lltypesystem import lltype, rffi
from rpython.translator.tool.cbuild import ExternalCompilationInfo
eci = ExternalCompilationInfo(post_include_bits=["""
static unsigned long pypy__rotateLeft(unsigned long x, long n) {
unsigned int x1 = x; /* arithmetic directly on int */
int n1 = n;
return (x1 << n1) | (x1 >> (32-n1));
}
"""])
_rotateLeft = rffi.llexternal(
"pypy__rotateLeft", [lltype.Unsigned, lltype.Signed], lltype.Unsigned,
_callable=_rotateLeft_emulator, compilation_info=eci,
_nowrapper=True, elidable_function=True)
# we expect the function _rotateLeft to be actually inlined
def _state2string(a, b, c, d):
return ''.join([
chr(a&0xFF), chr((a>>8)&0xFF), chr((a>>16)&0xFF), chr((a>>24)&0xFF),
chr(b&0xFF), chr((b>>8)&0xFF), chr((b>>16)&0xFF), chr((b>>24)&0xFF),
chr(c&0xFF), chr((c>>8)&0xFF), chr((c>>16)&0xFF), chr((c>>24)&0xFF),
chr(d&0xFF), chr((d>>8)&0xFF), chr((d>>16)&0xFF), chr((d>>24)&0xFF),
])
def _state2hexstring(a, b, c, d):
hx = '0123456789abcdef'
return ''.join([
hx[(a>>4)&0xF], hx[a&0xF], hx[(a>>12)&0xF], hx[(a>>8)&0xF],
hx[(a>>20)&0xF], hx[(a>>16)&0xF], hx[(a>>28)&0xF], hx[(a>>24)&0xF],
hx[(b>>4)&0xF], hx[b&0xF], hx[(b>>12)&0xF], hx[(b>>8)&0xF],
hx[(b>>20)&0xF], hx[(b>>16)&0xF], hx[(b>>28)&0xF], hx[(b>>24)&0xF],
hx[(c>>4)&0xF], hx[c&0xF], hx[(c>>12)&0xF], hx[(c>>8)&0xF],
hx[(c>>20)&0xF], hx[(c>>16)&0xF], hx[(c>>28)&0xF], hx[(c>>24)&0xF],
hx[(d>>4)&0xF], hx[d&0xF], hx[(d>>12)&0xF], hx[(d>>8)&0xF],
hx[(d>>20)&0xF], hx[(d>>16)&0xF], hx[(d>>28)&0xF], hx[(d>>24)&0xF],
])
def _string2uintlist(s, start, count, result):
"""Build a list of count r_uint's by unpacking the string
s[start:start+4*count] in little-endian order.
"""
for i in range(count):
p = start + i * 4
x = r_uint(ord(s[p]))
x |= r_uint(ord(s[p+1])) << 8
x |= r_uint(ord(s[p+2])) << 16
x |= r_uint(ord(s[p+3])) << 24
result[i] = x
# ======================================================================
# The real MD5 meat...
#
# Implemented after "Applied Cryptography", 2nd ed., 1996,
# pp. 436-441 by Bruce Schneier.
# ======================================================================
# F, G, H and I are basic MD5 functions.
def F(x, y, z):
return (x & y) | ((~x) & z)
def G(x, y, z):
return (x & z) | (y & (~z))
def H(x, y, z):
return x ^ y ^ z
def I(x, y, z):
return y ^ (x | (~z))
def XX(func, a, b, c, d, x, s, ac):
"""Wrapper for call distribution to functions F, G, H and I.
This replaces functions FF, GG, HH and II from "Appl. Crypto."
Rotation is separate from addition to prevent recomputation
(now summed-up in one function).
"""
res = a + func(b, c, d)
res = res + x
res = res + ac
res = _rotateLeft(res, s)
res = res + b
return res
XX._annspecialcase_ = 'specialize:arg(0)' # performance hint
class RMD5(object):
"""RPython-level MD5 object.
"""
def __init__(self, initialdata=''):
self._init()
self.update(initialdata)
def _init(self):
"""Set this object to an initial empty state.
"""
self.count = r_ulonglong(0) # total number of bytes
self.input = "" # pending unprocessed data, < 64 bytes
self.uintbuffer = [r_uint(0)] * 16
# Load magic initialization constants.
self.A = r_uint(0x67452301L)
self.B = r_uint(0xefcdab89L)
self.C = r_uint(0x98badcfeL)
self.D = r_uint(0x10325476L)
def _transform(self, inp):
"""Basic MD5 step transforming the digest based on the input.
Note that if the Mysterious Constants are arranged backwards
in little-endian order and decrypted with the DES they produce
OCCULT MESSAGES!
"""
# 'inp' is a list of 16 r_uint values.
a, b, c, d = A, B, C, D = self.A, self.B, self.C, self.D
# Round 1.
S11, S12, S13, S14 = 7, 12, 17, 22
a = XX(F, a, b, c, d, inp[ 0], S11, r_uint(0xD76AA478L)) # 1
d = XX(F, d, a, b, c, inp[ 1], S12, r_uint(0xE8C7B756L)) # 2
c = XX(F, c, d, a, b, inp[ 2], S13, r_uint(0x242070DBL)) # 3
b = XX(F, b, c, d, a, inp[ 3], S14, r_uint(0xC1BDCEEEL)) # 4
a = XX(F, a, b, c, d, inp[ 4], S11, r_uint(0xF57C0FAFL)) # 5
d = XX(F, d, a, b, c, inp[ 5], S12, r_uint(0x4787C62AL)) # 6
c = XX(F, c, d, a, b, inp[ 6], S13, r_uint(0xA8304613L)) # 7
b = XX(F, b, c, d, a, inp[ 7], S14, r_uint(0xFD469501L)) # 8
a = XX(F, a, b, c, d, inp[ 8], S11, r_uint(0x698098D8L)) # 9
d = XX(F, d, a, b, c, inp[ 9], S12, r_uint(0x8B44F7AFL)) # 10
c = XX(F, c, d, a, b, inp[10], S13, r_uint(0xFFFF5BB1L)) # 11
b = XX(F, b, c, d, a, inp[11], S14, r_uint(0x895CD7BEL)) # 12
a = XX(F, a, b, c, d, inp[12], S11, r_uint(0x6B901122L)) # 13
d = XX(F, d, a, b, c, inp[13], S12, r_uint(0xFD987193L)) # 14
c = XX(F, c, d, a, b, inp[14], S13, r_uint(0xA679438EL)) # 15
b = XX(F, b, c, d, a, inp[15], S14, r_uint(0x49B40821L)) # 16
# Round 2.
S21, S22, S23, S24 = 5, 9, 14, 20
a = XX(G, a, b, c, d, inp[ 1], S21, r_uint(0xF61E2562L)) # 17
d = XX(G, d, a, b, c, inp[ 6], S22, r_uint(0xC040B340L)) # 18
c = XX(G, c, d, a, b, inp[11], S23, r_uint(0x265E5A51L)) # 19
b = XX(G, b, c, d, a, inp[ 0], S24, r_uint(0xE9B6C7AAL)) # 20
a = XX(G, a, b, c, d, inp[ 5], S21, r_uint(0xD62F105DL)) # 21
d = XX(G, d, a, b, c, inp[10], S22, r_uint(0x02441453L)) # 22
c = XX(G, c, d, a, b, inp[15], S23, r_uint(0xD8A1E681L)) # 23
b = XX(G, b, c, d, a, inp[ 4], S24, r_uint(0xE7D3FBC8L)) # 24
a = XX(G, a, b, c, d, inp[ 9], S21, r_uint(0x21E1CDE6L)) # 25
d = XX(G, d, a, b, c, inp[14], S22, r_uint(0xC33707D6L)) # 26
c = XX(G, c, d, a, b, inp[ 3], S23, r_uint(0xF4D50D87L)) # 27
b = XX(G, b, c, d, a, inp[ 8], S24, r_uint(0x455A14EDL)) # 28
a = XX(G, a, b, c, d, inp[13], S21, r_uint(0xA9E3E905L)) # 29
d = XX(G, d, a, b, c, inp[ 2], S22, r_uint(0xFCEFA3F8L)) # 30
c = XX(G, c, d, a, b, inp[ 7], S23, r_uint(0x676F02D9L)) # 31
b = XX(G, b, c, d, a, inp[12], S24, r_uint(0x8D2A4C8AL)) # 32
# Round 3.
S31, S32, S33, S34 = 4, 11, 16, 23
a = XX(H, a, b, c, d, inp[ 5], S31, r_uint(0xFFFA3942L)) # 33
d = XX(H, d, a, b, c, inp[ 8], S32, r_uint(0x8771F681L)) # 34
c = XX(H, c, d, a, b, inp[11], S33, r_uint(0x6D9D6122L)) # 35
b = XX(H, b, c, d, a, inp[14], S34, r_uint(0xFDE5380CL)) # 36
a = XX(H, a, b, c, d, inp[ 1], S31, r_uint(0xA4BEEA44L)) # 37
d = XX(H, d, a, b, c, inp[ 4], S32, r_uint(0x4BDECFA9L)) # 38
c = XX(H, c, d, a, b, inp[ 7], S33, r_uint(0xF6BB4B60L)) # 39
b = XX(H, b, c, d, a, inp[10], S34, r_uint(0xBEBFBC70L)) # 40
a = XX(H, a, b, c, d, inp[13], S31, r_uint(0x289B7EC6L)) # 41
d = XX(H, d, a, b, c, inp[ 0], S32, r_uint(0xEAA127FAL)) # 42
c = XX(H, c, d, a, b, inp[ 3], S33, r_uint(0xD4EF3085L)) # 43
b = XX(H, b, c, d, a, inp[ 6], S34, r_uint(0x04881D05L)) # 44
a = XX(H, a, b, c, d, inp[ 9], S31, r_uint(0xD9D4D039L)) # 45
d = XX(H, d, a, b, c, inp[12], S32, r_uint(0xE6DB99E5L)) # 46
c = XX(H, c, d, a, b, inp[15], S33, r_uint(0x1FA27CF8L)) # 47
b = XX(H, b, c, d, a, inp[ 2], S34, r_uint(0xC4AC5665L)) # 48
# Round 4.
S41, S42, S43, S44 = 6, 10, 15, 21
a = XX(I, a, b, c, d, inp[ 0], S41, r_uint(0xF4292244L)) # 49
d = XX(I, d, a, b, c, inp[ 7], S42, r_uint(0x432AFF97L)) # 50
c = XX(I, c, d, a, b, inp[14], S43, r_uint(0xAB9423A7L)) # 51
b = XX(I, b, c, d, a, inp[ 5], S44, r_uint(0xFC93A039L)) # 52
a = XX(I, a, b, c, d, inp[12], S41, r_uint(0x655B59C3L)) # 53
d = XX(I, d, a, b, c, inp[ 3], S42, r_uint(0x8F0CCC92L)) # 54
c = XX(I, c, d, a, b, inp[10], S43, r_uint(0xFFEFF47DL)) # 55
b = XX(I, b, c, d, a, inp[ 1], S44, r_uint(0x85845DD1L)) # 56
a = XX(I, a, b, c, d, inp[ 8], S41, r_uint(0x6FA87E4FL)) # 57
d = XX(I, d, a, b, c, inp[15], S42, r_uint(0xFE2CE6E0L)) # 58
c = XX(I, c, d, a, b, inp[ 6], S43, r_uint(0xA3014314L)) # 59
b = XX(I, b, c, d, a, inp[13], S44, r_uint(0x4E0811A1L)) # 60
a = XX(I, a, b, c, d, inp[ 4], S41, r_uint(0xF7537E82L)) # 61
d = XX(I, d, a, b, c, inp[11], S42, r_uint(0xBD3AF235L)) # 62
c = XX(I, c, d, a, b, inp[ 2], S43, r_uint(0x2AD7D2BBL)) # 63
b = XX(I, b, c, d, a, inp[ 9], S44, r_uint(0xEB86D391L)) # 64
A += a
B += b
C += c
D += d
self.A, self.B, self.C, self.D = A, B, C, D
def _finalize(self, digestfunc):
"""Logic to add the final padding and extract the digest.
"""
# Save the state before adding the padding
count = self.count
input = self.input
A = self.A
B = self.B
C = self.C
D = self.D
index = len(input)
if index < 56:
padLen = 56 - index
else:
padLen = 120 - index
if padLen:
self.update('\200' + '\000' * (padLen-1))
# Append length (before padding).
assert len(self.input) == 56
W = self.uintbuffer
_string2uintlist(self.input, 0, 14, W)
length_in_bits = count << 3
W[14] = r_uint(length_in_bits)
W[15] = r_uint(length_in_bits >> 32)
self._transform(W)
# Store state in digest.
digest = digestfunc(self.A, self.B, self.C, self.D)
# Restore the saved state in case this instance is still used
self.count = count
self.input = input
self.A = A
self.B = B
self.C = C
self.D = D
return digest
# Down from here all methods follow the Python Standard Library
# API of the md5 module.
def update(self, inBuf):
"""Add to the current message.
Update the md5 object with the string arg. Repeated calls
are equivalent to a single call with the concatenation of all
the arguments, i.e. m.update(a); m.update(b) is equivalent
to m.update(a+b).
The hash is immediately calculated for all full blocks. The final
calculation is made in digest(). This allows us to keep an
intermediate value for the hash, so that we only need to make
minimal recalculation if we call update() to add moredata to
the hashed string.
"""
leninBuf = len(inBuf)
self.count += leninBuf
index = len(self.input)
partLen = 64 - index
assert partLen > 0
if leninBuf >= partLen:
W = self.uintbuffer
self.input = self.input + inBuf[:partLen]
_string2uintlist(self.input, 0, 16, W)
self._transform(W)
i = partLen
while i + 64 <= leninBuf:
_string2uintlist(inBuf, i, 16, W)
self._transform(W)
i = i + 64
else:
self.input = inBuf[i:leninBuf]
else:
self.input = self.input + inBuf
def digest(self):
"""Terminate the message-digest computation and return digest.
Return the digest of the strings passed to the update()
method so far. This is a 16-byte string which may contain
non-ASCII characters, including null bytes.
"""
return self._finalize(_state2string)
def hexdigest(self):
"""Terminate and return digest in HEX form.
Like digest() except the digest is returned as a string of
length 32, containing only hexadecimal digits. This may be
used to exchange the value safely in email or other non-
binary environments.
"""
return self._finalize(_state2hexstring)
def copy(self):
"""Return a clone object.
Return a copy ('clone') of the md5 object. This can be used
to efficiently compute the digests of strings that share
a common initial substring.
"""
clone = RMD5()
clone._copyfrom(self)
return clone
def _copyfrom(self, other):
"""Copy all state from 'other' into 'self'.
"""
self.count = other.count
self.input = other.input
self.A = other.A
self.B = other.B
self.C = other.C
self.D = other.D
# synonyms to build new RMD5 objects, for compatibility with the
# CPython md5 module interface.
md5 = RMD5
new = RMD5
digest_size = 16
|